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Abstract The quantitative structure-property relationship
(QSPR) method was used to model the fluorescence
excitation wavelengths (λex) of 42 boronic acid-based
fluorescent biosensors (30 in the training set and 12 in the
test set). In this QSPR study, unsupervised forward
selection (UFS), stepwise multiple linear regression
(SMLR), partial least squares regression (PLS) and asso-
ciative neural networks (ASNN) were employed to simulate
linear and nonlinear models. All models were validated by
a test set and Tropsha’s validation model. The resulting
ASNN nonlinear model demonstrates significant improve-
ment on the predictive ability of the neural network
compared to the SMLR and PLS linear models. The
descriptors used in the models are discussed in detail.
These QSPR models are useful tools for the prediction of
fluorescence excitation wavelengths of arylboronic acids.
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Introduction

Since saccharides play very important roles in a wide range
of biological processes [1, 2] and as biomarkers [3–5], a
great deal of effort has been directed towards investigating
ways to achieve selective recognition of various carbohy-
drates using small molecule probes/sensors [6–8]. In the
search for small molecules probes/sensors for biologically
important saccharides, the boronic acid group plays an
especially important role as a key recognition moiety [9–
12]. The ability of boronic acids to reversibly interact with
diol-containing saccharides allows the boronic acid moiety
to be used in carbohydrate recognition and sensing [13],
and in saccharide and glycoprotein separation [14, 15]. In
using the boronic acid moiety for carbohydrate sensor
design it is especially important to have boronic acid
reporter compounds that change their fluorescent properties
upon binding [9, 16]. In designing such boronic acid
fluorescent reporter compounds, the ability to estimate the
excitation wavelength of an arylboronic acid is very impor-
tant and can help save valuable research time. Therefore,
we are interested in developing mathematical models for
predicting the excitation wavelength of arylboronic acids.

So far the, mainly computational, efforts to predict
fluorescence excitation wavelengths were based on quan-
tum chemistry simulations, such as density function theory
(DFT) [17, 18] and ab initio calculations [19, 20]. However,
such accurate calculation of the fluorescence profiles is
very time-consuming and complex, thus precluding the use
of such methods to predict dozens of fluorescent com-
pounds in a fast and accurate manner.

Quantitative structure-property relationship (QSPR)
studies have been used successfully to predict the physico-
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chemical properties of chemical compounds based on their
structures [21, 22]. The biological counterpart of such
studies, quantitative structure-activity relationship (QSAR),
has also been extensively used with great success [23–25].
The concept of QSAR/QSPR is to transform searches for
compounds with desired properties by chemical intuition
and experience into a quantitative method using mathe-
matical models [26]. Once a correlation model between a
structure and an activity/property is found, any number of
compounds, including those not yet synthesized, can be
readily screened in silico to select structures with the

desired properties. It is then possible to select the most
promising compounds for synthesis and evaluation. Thus,
QSAR/QSPR approaches conserve resources and greatly
accelerate the process of developing new molecules for use
as drugs, materials, additives, or for other proposes with
high speed. Using this QSAR/QSPR approach, many
efforts have successfully been made to investigate the
spectral properties of various systems, for example the
prediction of the excitation and emission maxima of green
fluorescent protein (GFP) chromophores using an artificial
neural network (ANN) [27], and the modeling of fluores-
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Fig. 1 Chemical structure of boronic acid-based biosensors
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cence wavelengths of fluorescence probes using heuristic
method (HM) and radial basis function neural networks
(RBFNNs) [28].

In the present work, the QSPR approach was employed
to predict the excitation wavelengths (λex) of a diverse set
of 42 boronic acid-based fluorescent biosensors. The E-
DRAGON and MOPAC programs [29] were used for the
generation of the various descriptors. Unsupervised forward
selection (UFS) [30] was then utilized for the rational
selection of descriptors. Finally, on the basis of the selected
descriptors, stepwise multiple linear regression (SMLR)
[31], partial least squares (PLS) regression [32] and
associative neural network (ASNN) simulation [33] were
performed for the development of quantitative linear and
nonlinear QSPR models between excitation wavelengths
(λex) and chemical structures.

Materials and methods

Data set

The fluorescence excitation wavelengths of all 42 boronic
acid-based biosensors were obtained from the literatures or
by experiment. The structures of these boronic acids are
given in Fig. 1. The experimental excitation wavelengths
are listed in Table 1. The excitation wavelengths of all
boronic acids were determined in phosphate buffer (pH 7.4)
or aqueous solution. The data set is randomly divided into
two sets: a training set of 30 compounds (1–30) and a test
set of 12 compounds (31–42). The training set was used to
select the descriptors and develop the QSPR models; the
test set was then used to validate their accurate and
predictive ability.

Fluorescence studies

Boronic acids were purchased from Frontier Scientific
(Logan, UT) and Aldrich (Milwaukee, WI). Buffer reagents
were obtained from Aldrich and Acros Organics (Fair Lawn
NJ) and were used without purification. The water used for
fluorescence studies was doubled distilled and further
purified with a Milli-Q filtration system. Quartz cuvettes
were used in all studies. A Shimadzu UV-1700 UV-visible
spectrometer was used for all absorbance studies (Shimadzu,
Kyoto, Japan). A Shimadzu RF-5301PC fluorometer was
used for all fluorescent studies. Solutions of boronic acids
(1×10–5 M) were prepared in 0.1 M phosphate buffer at
pH 7.40. The solutions were then transferred to a 1 cm
quartz cell and UV absorbances were recorded immediately.
The fluorescence excitation wavelengths were measured as
the UV maximum absorbance wavelengths.

Calculation of QSPR descriptors

The chemical structures of all compounds were drawn with
the ChemDraw program (CambridgeSoft, Cambridge, MA).
Geometry optimization was then performed with the semi-
empirical quantum mechanics-based PM3 method [34–36]
implemented the in MOPAC 7 program [29]. The MOPAC
output files were used to calculate the descriptors using the
E-DRAGON 1.0 online program (http://www.vcclab.org/
lab/edragon/. All 1,664 descriptors generated by the E-
DRAGON program could be described as belonging to
one of 20 classes: constitutional descriptors, topological

Table 1 Descriptors and classes selected by unsupervised forward
selection (UFS)

Descriptor Class Reference

PJI2a Topological descriptors [47]
nDBb Constitutional descriptors [48]
GATS1pc 2D autocorrelations [49]
R7e+d GETAWAY descriptors [50]
BEHm1e Burden eigenvalues [51]
JGI4f Topological charge indices [52]
AROMg Geometrical descriptors [53]
MATS5mh 2D autocorrelations [54]
MATS6mi 2D autocorrelations [54]
MATS8mj 2D autocorrelations [54]
MATS3pk 2D autocorrelations [54]
DISPel Geometrical descriptors [55]
RDF145mm RDF descriptors [56]
Mor13en 3D-MoRSE descriptors [57]
P1eo WHIM descriptors [58]
ALOGPp Molecular properties [59]
LUMO−HOMOq Quantum descriptors [29]

a 2D Petitjean shape index
b Number of double bonds
c Geary autocorrelation of path length 1 weighted by atomic
polarizabilities
d GETAWAY R maximal autocorrelation of path length 7 weighted by
atomic Sanderson electronegativities
e Highest eigenvalue n. 1 of Burden matrix weighted by atomic masses
fMean topological charge index of order 4
g Aromaticity index
hMoran autocorrelation of path length 5 weighted by atomic masses
i Moran autocorrelation of path length 6 weighted by atomic masses
j Moran autocorrelation of path length 8 weighted by atomic masses
kMoran autocorrelation of path length 3 weighted by atomic
polarizabilities
l d COMMA2 value weighted by atomic Sanderson electronegativities
m Radial Distribution Function of 14.5 weighted by atomic masses
n 3D-MoRSE of signal 13 weighted by atomic Sanderson electronegativities
o First component shape directional WHIM index weighted by atomic
Sanderson electronegativities
p Ghose-Crippen octanol-water partition coefficient (logP)
q Energy gap between the lowest occupied molecular orbital energy
(LUMO) and the highest occupied molecular orbital energy (HOMO)
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descriptors, walk and path counts, connectivity indices,
information indices, 2D autocorrelations, edge adjacency
indices, Burden eigenvalue descriptors, topological charge
indices, eigenvalue-based indices, Randic molecular pro-
files, geometrical descriptors, RDF descriptors, 3D-MoRSE
descriptors, WHIM descriptors, GETAWAY descriptors,
functional group counts, atom-centered fragments, charge
descriptors and molecular properties. Meanwhile, nine
quantum descriptors derived from the MOPAC calculation
were also included in the QSPR construction [29]. The E-
DRAGON descriptors were calculated on the online Virtual
Computational Chemistry Laboratory (http://www.vcclab.
org/) [37], and the MOPAC calculations were performed
using MOPAC 7.1 program [38] on a Linux workstation.

Selection of descriptors

After identification of a large number of descriptors,
rational selection was carried out to reduce the number of

descriptors to an acceptable level containing no redundan-
cies and minimal multicollinearity. In this selection, a novel
descriptor reduction algorithm, unsupervised forward selec-
tion (UFS) [30], was employed to select suitable descrip-
tors. UFS can select from a data matrix a maximal linearly
independent set of columns with a minimal number of
multiple correlations. It was designed for use in the
development of QSAR models, where the m by n data
matrix contains the values of n variables (typically
molecular properties) for m objects (typically compounds).
In descriptor selection, variables with small variance (not
significant at the 5% level) were then removed. The UFS
procedure was then applied repeatedly using values of R2

max

ranging from 0.1 to 0.9 in increments of 0.1, together with
R2
max ¼ 0:99. In all cases, models were built from the subset

of variables identified by UFS using the Portsmouth
formulation of continuum regression (CR) [39], a procedure
in which the model selection criterion depends on a
continuous parameter α in the range 0≤α≤1.5. The CR
calculations were performed with PARAGON software
(can be downloaded from http://www.port.ac.uk) using
values of R ranging from 0 to 1.5 in increments of 0.1.
The UFS calculation was performed in the Virtual Compu-
tational Chemistry Laboratory (http://www.vcclab.org/)
[37].

Stepwise multiple linear regression

As a commonly used statistical method in the QSAR/QSPR
approach, stepwise multiple linear regression (SMLR) was
employed in development of the linear QSPR model herein

Fig. 2 Estimated vs experimen-
tal λex by stepwise multiple
linear regression (SMLR) linear
model

Table 2 Descriptors, coefficients, standard error (SD) and t-values for
the stepwise multiple linear regression (SMLR) linear model

Descriptor Coefficient SD

Constant 41.89 30.47
AROM 81.34 20.96
nDB 7.21 1.31
GATS1p 100.18 13.70
R7e+ -595.12 265.49
LUMO-HOMO -19.82 1.53
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as implemented in the SAS 8.2 program [40] with all the
default values. The statistical significance of stepwise
addition of parameters was judged using the F value.

Partial least squares regression

It is well known that partial least squares (PLS) regression
is quite sensitive to the noise created by excessive irrelevant
descriptors in QSAR and QSPR modeling [32]. To achieve
the best model quality, a two-step descriptor selection
procedure was applied. The first step consists of the
elimination of the low-variable (almost constant) descrip-
tors that differ from a constant only for a few (2–3) com-
pounds in the training set. Such descriptors cannot provide
useful statistical information and simply help to fit these
particular compounds, thus decreasing the predictivity. In
the second step, the descriptor subset was optimized using
Q2-guided descriptor selection by means of a genetic
algorithm. The stability and good prediction accuracy of
this method has been demonstrated in computational
experiments [41]. PLS analysis was calculated in the
Virtual Computational Chemistry Laboratory (http://www.
vcclab.org/) [37].

Associative neural network simulation

Associative neural network (ASNN) represents a combina-
tion of an ensemble of feed-forward neural networks and
the k-nearest neighbor technique [33]. This method uses the
correlation between ensemble responses as a measure of
distance amongst the analyzed cases for the nearest
neighbor technique, thus providing improved prediction
through bias correction of the neural network ensemble. An
associative neural network has a memory capacity in
agreement with the training set. If new data becomes
available, the network further improves its predictive ability
and provides a reasonable approximation of the unknown

function without the need to retrain the neural network
ensemble. This feature dramatically improves its predictive
ability over other traditional neural networks and k-nearest
neighbor techniques. Another important feature of ASNN is
the possibility to interpret neural network results by
analyzing correlations between data cases in the space of

Table 4 Experimental and estimated excitation wavelengths (λex).
ASNN Associative neural network

No Experimental SMLR-
estimated

PLS-
estimated

ASNN-
estimated

Reference

Training set
1 314 303.44 292.59 298.45 [60]
2 470 421.21 421.55 461.92 [61]
3 300 305.89 314.32 301.55 [62]
4 377 417.14 403.23 384.31 [63]
5 320 325.68 335.65 323.17 [63]
6 370 369.21 376.47 374.01 *a

7 315 291.54 281.78 306.84 [64]
8 286 303.24 304.92 288.31 [65]
9 310 305.40 309.73 310.27 [65]
10 307 299.13 316.52 311.72 *
11 345 337.08 342.73 333.49 [66]
12 275 294.50 293.24 278.52 [67]
13 275 295.16 280.39 274.96 [67]
14 275 300.45 291.64 289.37 [67]
15 345 351.07 344.51 349.61 [66]
16 233 242.78 229.58 232.46 *
17 225 235.75 232.59 244.32 [68]
18 267 262.98 264.58 262.86 *
19 253 250.42 267.32 251.24 *
20 337 348.98 348.09 335.72 *
21 349 356.39 360.76 355.50 *
22 429 416.07 413.63 426.02 *
23 340 329.94 331.50 332.64 *
24 330 334.58 339.51 331.61 [69]
25 310 316.59 309.83 308.66 [69]
26 272 241.43 265.99 265.90 *
27 282 282.76 255.58 274.55 *
28 267 260.78 257.84 265.84 *
29 266 255.10 276.32 268.70 *
30 268 261.96 249.62 268.79 *
Test set
31 370 396.83 403.12 388.12 [70]
32 470 393.15 414.56 474.62 [71]
33 300 305.30 321.66 293.22 [72]
34 320 295.32 326.82 304.44 *
35 275 273.86 321.30 288.93 *
36 493 399.94 392.20 415.46 [73]
37 268 242.61 249.75 259.69 *
38 235 284.70 290.14 262.11 *
39 347 344.21 353.86 354.05 *
40 363 353.36 352.74 358.24 *
41 340 348.98 353.45 298.79 [69]
42 275 249.26 244.13 258.74 *

a Values measured in our laboratory

Table 3 Descriptors, coefficients and SD for the partial least squares
(PLS) linear model

Descriptor Coefficient SD

Constant 426.24
nDB 3.051 0.92
GATS1p 26.62 24.24
BEHm1 1.25 6.61
JGI4 -1,045.89 352.12
AROM 70.99 130.05
MATS5m 32.74 5.04
MATS6m 39.77 23.71
R7e+ -565.05 241.35
LUMO−HOMO -20.03 1.67
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models. In the current study, a standard type of neural
network was employed for neural network training using
the early stopping over ensemble (ESE) method. Training
was stopped when a minimum error for the validation set
was calculated (“early stopping” point). Neural network
weights were updated using Levenberg-Marquardt algo-
rithm. The number of hidden neurons was fixed at 3, and a
100 network ensemble was used. This ASNN simulation
was performed using the program ASNN 1.0 [42] on a
Windows workstation.

Quantitative structure-property relationship
model validation

Typically, the final and most important characteristic of
QSAR or QSPR model development is model validation, in
which estimates of the predictive power of the model are
generated [43]. Ideally, the predictive power should be
defined as the ability of the model to accurately predict a
target property, such as activity, of compounds that were
not included in the training set in model development.
Indeed, several recent publications suggest that the only
way to ensure the high predictive power of a QSAR or
QSPR model is to demonstrate a significant correlation
between predicted and observed activities for a validation
set of compounds that were not employed in model
development [44, 45]. Therefore in our first validation, we
used an external set containing 12 compounds to verify the
accuracy of prediction.

Recently, Tropsha and coworkers have introduced a new
set of validation criteria for QSAR or QSPR models [46,

47]. They consider a QSAR model predictive, if the
following conditions are satisfied:

q2 > 0:5

r2 > 0:6
r2�r20ð Þ
r2 < 0:1 or

r2�r
02
0ð Þ

r2 < 0:1

0:85 � k � 1:15 or 0:85 � k 0 � 1:15

where r2 is the correlation coefficient between the predicted
and observed activities, r20 the coefficient of determination
between predicted and observed activities characterizing
linear regression with the Y-intercept set to zero (i.e.,
described by Y = kX, where Y and X are the actual and
predicted activity, respectively), r

02
0 is the coefficient of

determination between observed and predicted activities,
and k and k′ are the slopes of the regression lines through
the origin.

It has been demonstrated that all of the above criteria are
indeed necessary to adequately assess the predictive ability
of a QSAR or QSPR model. Thus, we employed these
criteria to validate the predictive power of our QSPR
models.

Results and discussion

Unsupervised forward selection rational
selection of descriptors

In the UFS phase, only 17 descriptors are significantly
correlated with λex at the 95% confidence interval (CI) level

Fig. 3 Estimated vs experimen-
tal λex by the partial least
squares (PLS) linear model
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among the 1,664 descriptors used to model the excitation
wavelength (λex) QSPR. Belonging to 13 varied classes,
these 17 descriptors were then used as input for the
development of the linear and nonlinear QSPR models of
λex. The UFS-selected descriptors, classes and references
are shown in Table 1.

Stepwise multiple linear regression linear model of λex

Based on these 17 descriptors after selection, a training set
of 30 compounds was used to develop an optimal SMLR
linear model. Leave-one-out (LOO) cross-validation statis-
tical parameters were calculated to evaluate the model
quality. Finally, a five-descriptor (AROM, nDB, GATS1p,
R7e+ and LUMO−HOMO) correlation model was obtained
as represented in Table 2. The obtained squared correlation
(r2) was 0.899 and the LOO squared correlation (q2) was
0.856 for the training set. The standard error (RMSE) was
17.45 and the F-value was 249.01. For the test set, the
predicted results obtained were r2 = 0.769, q2 = 0.620,
RMSE = 39.71 and F-value = 33.38. The estimated λex
values based on the SMLR linear model are listed in

Table 4. Figure 2 depicts the estimated vs experimental λex
values for all 42 compounds.

Partial least squares linear model of λex

A linear model of λex was also developed by PLS using 17
selected descriptors. In this case, a correlation model
consisting of nine descriptors (nDB, GASTS1p, BEHm1,
JGI4, AROM, MATS5m, MATS6m, R7e + and LUMO−
HOMO) was obtained as shown in Table 3. The number of
PLS components is 2. For the training set, r2 was 0.901 and
q2 was 0.880. RMSE was 17.31 and the F-value was 253.76.
The predictive ability of the external test set yielded r2 =
0.705, q2 = 0.567, RMSE = 44.91 and F-value = 23.91. The
estimated λex results of the PLS model are shown in Table 4.
The experimental and estimated λex in the training and test
set are shown in Fig. 3.

Associative neural network nonlinear model of λex

In this case a nonlinear ASNN model of λex was developed
using the same selected subset of 17 descriptors as in the

Fig. 4 Estimated versus experi-
mental λex by associative neural
network (ASNN) nonlinear
model

Table 5 Validation parameters
for three quantitative structure-
property relationship (QSPR)
models

Model Training set Test set r20 r2 � r20
� �

K

q2 r2 q2 r2 r2

SMLR 0.856 0.899 0.690 0.769 0.898 0.001 0.999
PLS 0.880 0.901 0.567 0.705 0.901 0 1.000
ASNN 0.983 0.983 0.858 0.874 0.982 0.001 1.001
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linear models. The training of ASNN used Levenberg-
Marquardt algorithm and k=10 nearest neighbors, and
yielded an additional improvement in the results [r2=
0.983, q2=0.983, RMSE=7.10 and mean absolute error
(MAE)=5.141] as compared with the linear models.
Application of the ASNN model in the test set gave values
of r2=0.874, q2=0.858, RMSE=29.67 and MAE=20.104.
The estimated results of the ASNN nonlinear model are
given in Table 4. Figure 4 shows the estimated vs
experimental λex using the ASNN nonlinear model. The
ASNN has an RMSE of 7.10 nm for the training set and
29.67 nm for the test set. The r2 of the training set is 0.983,
and that of the test set is 0.874, whereas the value of q2 is
0.983 and 0.858, respectively.

This ASNN model demonstrates a significant improve-
ment in the predictive ability of a neural network compared
to the SMLR and PLS linear models, thus indicating a
nonlinear relationship between the descriptors and the
fluorescence excitation wavelength (λex).

Validation of QSPR models

In order to validate the QSPR models, Tropsha’s validation
criteria were applied as depicted in Table 5. It should be
noted that all three models could be accepted as reliable
QSPR models when judged by Tropsha’s model [45, 46].
The best model—the ASNN nonlinear model—had q2=
0.983 and r2=0.983 for tthe raining set, and q2=0.858 and
r2=0.874 for the test set, r20 ¼ 0:982 and k=1.001.

Interpretation of descriptors

To discuss the descriptors in the regression models, it is
necessary to consider factors correlated with fluorescence
wavelength λex. In the case of the SMLR linear model, five
descriptors—AROM, nDB, GATS1p, R7e+ and LUMO−
HOMO—were included. Generally speaking, an increase in
the extent of the π-electron system (i.e., degree of
aromaticity and number of double bonds) leads to a shift
in the absorption and fluorescence spectra to longer wave-
lengths [75]. The aromaticity index (AROM), as a
geometric descriptor in all three nonlinear and linear
models, reflects the planar and rigid geometry of the
molecule, contributes positively to the excitation wave-
length. The positive nature of this coefficient is in good
accordance with the theory that the electron is easier to
transfer in the molecule of aromatic plane. The number of
double bonds (nDB) in both the two linear and the
nonlinear models is a constitutional descriptor that mea-
sures the degree of unsaturation of the molecule. The
positive coefficients of nDB are in good agreement with
the fact that increasing the unsaturation of a molecule
causes the chromophore to redshift. GATS1p, the Geary

autocorrelation of path length 1 weighted by atomic
polarizabilities, is related to conventional polarizability
while allowing for attenuation of the influence of more
remote atoms and bonds. The positive coefficient of
GATS1p indicates that the fluorescence excitation wave-
length would increase with increasing polarizability.
Another affirmative descriptor is R7e+, the GETAWAY
R maximal autocorrelation of path length 7 weighted by
atomic Sanderson electronegativities. Atomic electronega-
tivity reflects the electron-attracting ability of an atom in a
particular molecular environment, and thus has a strong
effect on fluorescence excitation wavelengths. The LUMO−
HOMO energy gap is a quantum descriptor that approx-
imates the energy difference between the electronic states.
This descriptor relates directly to the fluorescence excitation
wavelength, and thus appears in both linear models as well as
the nonlinear model.

In the PLS linear model, four more descriptors, BEHm1,
JGI4, MATS5m and MATS6m, were found to govern the
fluorescence excitation wavelength. BEHm1, MATS5m and
MATS6m are the descriptors weighted by atomic masses
with positive contribution. The favorable nature of these
coefficients suggests that the atomic mass may play an
important role in the process of fluorescent excitation. As
the mean topological charge index of order 4, JGI4 depicts
the charge distribution. For this descriptor, the negative
coefficient agrees well with R7e+ in the SMLR linear
model.

Conclusions

The present report demonstrates that both linear and
nonlinear QSPR models can be used successfully to predict
fluorescence excitation wavelengths (λex). All three models
were validated by a test set and Tropsha’s validation model
[45, 46]. These models are easy to interpret and have high
predictive ability. Among these three models, the ASNN
nonlinear model demonstrates the most significant improve-
ment in the predictive ability of a neural network compared
to the SMLR and PLS linear models. The estimated results
are in good agreement with experimental values. In
conclusion, this QSPR approach can be used as a probe for
the prediction of fluorescence excitation wavelengths, and
the corresponding descriptors can also contribute to the
fluorescent profiling of boronic acids.
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